A residual a posteriori error estimate for the time–domain boundary element method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A posteriori error estimate for the mixed finite element method

A computable error bound for mixed finite element methods is established in the model case of the Poisson–problem to control the error in the H(div,Ω) ×L2(Ω)–norm. The reliable and efficient a posteriori error estimate applies, e.g., to Raviart–Thomas, Brezzi-Douglas-Marini, and Brezzi-DouglasFortin-Marini elements. 1. Mixed method for the Poisson problem Mixed finite element methods are well-e...

متن کامل

Residual-based a posteriori error estimate for a mixed Reißner-Mindlin plate finite element method

Reliable and efficient residual-based a posteriori error estimates are established for the stabilised locking-free finite element methods for the Reissner-Mindlin plate model. The error is estimated by a computable error estimator from above and below up to multiplicative constants that do neither depend on the mesh-size nor on the plate’s thickness and are uniform for a wide range of stabilisa...

متن کامل

A posteriori boundary element error estimation (

An a posteriori error estimator is presented for the boundary element method in a general framework. It is obtained by solving local residual problems for which a local concept is introduced to accommodate the fact that integral operators are nonlocal operators. The estimator is shown to have an upper and a lower bound by the constant multiples of the exact error in the energy norm for Symm’s a...

متن کامل

A posteriori error estimate in quantities of interest for the finite element heterogeneous multiscale method

We present an a posteriori error analysis in quantities of interest for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. The multiscale method is based on a macro-to-micro formulation, where the macroscopic physical problem is discretized in a macroscopic finite element space and the missing macroscopic data is recovered on-the-fly using the so...

متن کامل

A Posteriori Error Estimates for Boundary Element Methods

This paper deals with a general framework for a posteriori error estimates in boundary element methods which is specified for three examples, namely Symm's integral equation, an integral equation with a hypersingular operator, and a boundary integral equation for a transmission problem. Based on these estimates, an analog of Eriksson and Johnson's adaptive finite element method is proposed for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Numerische Mathematik

سال: 2020

ISSN: 0029-599X,0945-3245

DOI: 10.1007/s00211-020-01142-y